Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 192

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Emergence of crack tip plasticity in semi-brittle $$alpha$$-Fe

Suzudo, Tomoaki; Ebihara, Kenichi; Tsuru, Tomohito; Mori, Hideki*

Journal of Applied Physics, 135(7), p.075102_1 - 075102_7, 2024/02

Fracture of body centred cubic (bcc) metals and alloys below the ductile-to-brittle transition temperature is brittle. This is theoretically explained by the notion that the critical stress intensity factor of a given crack front for brittle fracture is smaller than that for plasticdeformation; hence, brittle fracture is chosen over plastic deformation. Although this view is true from a macroscopic point of view, such brittle fracture is always accompanied by small-scale plastic deformation in the vicinity of the crack tip, i.e. crack tip plasticity. This short paper investigates the origin of this plasticity using atomistic modeling with a recently developed machine-learning interatomic potential of $$alpha$$-Fe. The computational results identified the precursor of crack tip plasticity, i.e. the group of activated atoms dynamically nucleated by fast crack propagation.

Journal Articles

Machine learning molecular dynamics reveals the structural origin of the first sharp diffraction peak in high-density silica glasses

Kobayashi, Keita; Okumura, Masahiko; Nakamura, Hiroki; Itakura, Mitsuhiro; Machida, Masahiko; Urata, Shingo*; Suzuya, Kentaro

Scientific Reports (Internet), 13, p.18721_1 - 18721_12, 2023/11

 Times Cited Count:1 Percentile:0(Multidisciplinary Sciences)

The first sharp peak diffraction peak (FSDP) in the structure factor of amorphous materials is thought to reflect the medium-range order structure in amorphous materials, and the structural origin of the FSDP has been a subject of ongoing debate. In this study, we employed machine learning molecular dynamics (MLMD) with nearly first-principles calculation accuracy to investigate the structural origin of the FSDP in high-density silica glass. First, we successfully reproduced various experimental data of high-density silica glass using MLMD. Furthermore, we revealed that the development (or reduction) of the FSDP in high-density silica glass is characterized by the deformation behavior of ring structures in Si-O covalent bond networks under compression.

Journal Articles

Hierarchical aggregation in a complex fluid; The Role of isomeric interconversion

Massey, D.*; Williams, C. D.*; Mu, J.*; Masters, A. J.*; Motokawa, Ryuhei; Aoyagi, Noboru; Ueda, Yuki; Antonio, M. R.*

Journal of Physical Chemistry B, 127(9), p.2052 - 2065, 2023/03

 Times Cited Count:0 Percentile:0(Chemistry, Physical)

Journal Articles

Machine learning molecular dynamics simulations for evaluation of high-temperature properties of nuclear fuel materials

Kobayashi, Keita; Nakamura, Hiroki; Itakura, Mitsuhiro; Machida, Masahiko; Okumura, Masahiko

Materia, 62(3), p.175 - 181, 2023/03

no abstracts in English

Journal Articles

Interaction between an edge dislocation and faceted voids in body-centered cubic Fe

Yabuuchi, Kiyohiro*; Suzudo, Tomoaki

Journal of Nuclear Materials, 574, p.154161_1 - 154161_6, 2023/02

 Times Cited Count:0 Percentile:0.01(Materials Science, Multidisciplinary)

In nuclear materials, irradiation defects cause degradation of mechanical properties. In these materials, the relationship between dislocations and voids is particularly important for mechanical strength. Although only spherical voids have been studied in the past, this study focuses on faceted voids, which are observed simultaneously with spherical voids. In the current study, molecular dynamics was used to analyze the effect of faceted voids in the irradiation hardening of pure iron. Specifically, we clarified the difference in obstacle strength and interaction processes between spherical voids and faceted voids, and that even faceted voids show differences in interaction depending on their crystallographic arrangement with dislocations.

Journal Articles

Difference in expansion and dehydration behaviors between NH$$_4$$- and K-montmorillonite

Kawakita, Ryohei; Saito, Akito*; Sakuma, Hiroshi*; Anraku, Sohtaro; Kikuchi, Ryosuke*; Otake, Tsubasa*; Sato, Tsutomu*

Applied Clay Science, 231, p.106722_1 - 106722_7, 2023/01

 Times Cited Count:1 Percentile:21.06(Chemistry, Physical)

Journal Articles

Molecular dynamics simulation to elucidate effects of spatial geometry on interactions between an edge dislocation and rigid, impenetrable precipitate in Cu

Tsugawa, Kiyoto*; Hayakawa, Sho*; Okita, Taira*; Aichi, Masaatsu*; Itakura, Mitsuhiro; Suzuki, Katsuyuki*

Computational Materials Science, 215, p.111806_1 - 111806_8, 2022/12

 Times Cited Count:2 Percentile:29.01(Materials Science, Multidisciplinary)

Journal Articles

Effect of different interlayer counter-ions on montmorillonite swelling; Key controlling factors evaluated by molecular dynamic simulations

Yotsuji, Kenji*; Tachi, Yukio; Sakuma, Hiroshi*; Kawamura, Katsuyuki*

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 29(2), p.63 - 81, 2022/12

The understanding of the swelling phenomenon of montmorillonite is essential to predict the physical and chemical behavior of clay-based barriers in radioactive waste disposal systems. This study investigated the key factors controlling crystalline swelling behavior of montmorillonite with different interlayer counter-ions by molecular dynamics (MD) simulations. On the basis of the comparisons between MD simulated and experimental results, the water content in the interlayer in five homoionic (Na$$^{-}$$, K$$^{-}$$, Cs$$^{-}$$, Ca$$^{-}$$ and Sr$$^{-}$$) montmorillonite was strongly correlated to the hydration number and the preference of an outer- or inner-sphere complex of each counter-ion. The detailed analysis for these results offer insights that the hydration number is controlled by the hydration free energy, the volume and the distribution of each interlayer counter-ion. The systematic MD simulations with virtually variable parameters clarified that the hydration free energy and the charge of interlayer counter- ions compete as influencing factors, and the control the formation rate of an outer-sphere complex of each counter-ion. The empirical relationships between these key factors will allow essential insights into predicting the swelling behavior of montmorillonite with different interlayer counter-ions.

Journal Articles

Cleavages along {110} in bcc iron emit dislocations from the curved crack fronts

Suzudo, Tomoaki; Ebihara, Kenichi; Tsuru, Tomohito; Mori, Hideki*

Scientific Reports (Internet), 12, p.19701_1 - 19701_10, 2022/11

 Times Cited Count:4 Percentile:41.53(Multidisciplinary Sciences)

Body-centered-cubic (bcc) transition metals, such as $$alpha$$-Fe and W, cleave along the {100} plane, even though the surface energy is the lowest along the {110} plane. To unravel the mechanism of this odd response, large-scale atomistic simulations of curved cleavage cracks of $$alpha$$-Fe were conducted in association with stress intensity factor analyses of straight crack fronts using an interatomic potential created by an artificial neural network technique. The study provides novel findings: Dislocations are emitted from the crack fronts along the {110} cleavage plane, and this phenomenon explains why the {100} plane can be the cleavage plane. However, the simple straight crack-front analyses did not yield the same conclusion. It is suggested that atomistic modeling, at sufficiently large scales to capture the inherent complexities of materials using highly accurate potentials, is necessary to correctly predict the mechanical strength. The method adopted in this study is generally applicable to the cleavage problem of bcc transition metals and alloys.

Journal Articles

Machine learning potentials of kaolinite based on the potential energy surfaces of GGA and meta-GGA density functional theory

Kobayashi, Keita; Yamaguchi, Akiko; Okumura, Masahiko

Applied Clay Science, 228, p.106596_1 - 106596_11, 2022/10

 Times Cited Count:6 Percentile:77.65(Chemistry, Physical)

no abstracts in English

Journal Articles

Machine learning molecular dynamics simulations toward exploration of high-temperature properties of nuclear fuel materials; Case study of thorium dioxide

Kobayashi, Keita; Okumura, Masahiko; Nakamura, Hiroki; Itakura, Mitsuhiro; Machida, Masahiko; Cooper, M. W. D.*

Scientific Reports (Internet), 12(1), p.9808_1 - 9808_11, 2022/06

 Times Cited Count:9 Percentile:71.37(Multidisciplinary Sciences)

no abstracts in English

Journal Articles

Fourier interpolation method in phase space of Hamiltonian systems

Sasa, Narimasa

Journal of the Physical Society of Japan, 91(5), p.054001_1 - 054001_8, 2022/05

 Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)

Journal Articles

${it In situ}$ TEM observation and MD simulation of frank partial dislocation climbing in Al-Cu alloy

Chen, J.*; Yoshida, Kenta*; Suzudo, Tomoaki; Shimada, Yusuke*; Inoue, Koji*; Konno, Toyohiko*; Nagai, Yasuyoshi*

Materials Transactions, 63(4), p.468 - 474, 2022/04

 Times Cited Count:1 Percentile:17.21(Materials Science, Multidisciplinary)

In situ electron irradiation using high-resolution transmission electron microscopy (HRTEM) was performed to visualize the Frank loop evolution in aluminium-copper (Al-Cu) alloy with an atomic-scale spatial resolution of 0.12 nm. The ${it in situ}$ HRTEM observation along the [110] direction of the FCC-Al lattice, Frank partial dislocation bounding an intrinsic stacking fault exhibited an asymmetrical climb along the $$<$$112$$>$$ direction opposed to those in the reference pure Al under an electron irradiation, with a corresponding displacement-per-atom rate of 0.055-0.120 dpa/s. The asymmetrical climb of the partial dislocation was described as pinning effects due to Cu-Cu bonding in Guinier-Preston zones by a molecular dynamics simulation.

Journal Articles

Molecular dynamics study of phosphorus migration in $$Sigma$$3(111) and $$Sigma$$5(0-13) grain boundaries of $$alpha$$-iron

Ebihara, Kenichi; Suzudo, Tomoaki

Metals, 12(4), p.662_1 - 662_10, 2022/04

 Times Cited Count:2 Percentile:32.54(Materials Science, Multidisciplinary)

Phosphorus atoms in steels accumulate at grain boundaries via thermal and/or irradiation effects and induce grain boundary embrittlement. Quantitative prediction of phosphorus segregation at grain boundaries under various temperature and irradiation conditions is therefore essential for preventing embrittlement. To develop a model of grain boundary phosphorus segregation in $$alpha$$-iron, we studied the migration of a phosphorus atom in two types of symmetrical tilt grain boundaries ($$Sigma$$3[1-10](111) and $$Sigma$$5[100](0-13) grain boundaries) using molecular dynamics simulations with an embedded atom method potential. The results revealed that, in the $$Sigma$$3 grain boundary, phosphorus atoms migrate three-dimensionally mainly in the form of interstitial atoms, whereas in the $$Sigma$$5 grain boundary, these atoms migrate one-dimensionally mainly via vacancy-atom exchanges. Moreover, de-trapping of phosphorus atoms and vacancies was investigated.

Journal Articles

Self-learning hybrid Monte Carlo method for isothermal-isobaric ensemble; Application to liquid silica

Kobayashi, Keita; Nagai, Yuki; Itakura, Mitsuhiro; Shiga, Motoyuki

Journal of Chemical Physics, 155(3), p.034106_1 - 034106_9, 2021/07

 Times Cited Count:5 Percentile:44.89(Chemistry, Physical)

no abstracts in English

Journal Articles

Machine learning potentials for tobermorite minerals

Kobayashi, Keita; Nakamura, Hiroki; Yamaguchi, Akiko; Itakura, Mitsuhiro; Machida, Masahiko; Okumura, Masahiko

Computational Materials Science, 188, p.110173_1 - 110173_14, 2021/02

 Times Cited Count:14 Percentile:73.11(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Brittle-fracture simulations of curved cleavage cracks in $$alpha$$-iron; A Molecular dynamics study

Suzudo, Tomoaki; Ebihara, Kenichi; Tsuru, Tomohito

AIP Advances (Internet), 10(11), p.115209_1 - 115209_8, 2020/11

 Times Cited Count:9 Percentile:53.43(Nanoscience & Nanotechnology)

The mechanism of their brittle fracture of BCC metals is not fully understood. In this study, we conduct a series of three-dimensional molecular dynamics simulations of cleavage fracture of $$alpha$$-iron. In particular, we focus on mode-I loading starting from curved crack fronts. In the simulations, brittle fractures are observed at cleavages on the {100} plane, while the initial cracks become blunted on other planes as a result of dislocation emissions. Our modeling results agreed with a common experimental observation, that is, {100} is the preferential cleavage plane in bcc transition metals.

Journal Articles

Atomistic modeling of hardening in spinodally-decomposed Fe-Cr binary alloys

Suzudo, Tomoaki; Takamizawa, Hisashi; Nishiyama, Yutaka; Caro, A.*; Toyama, Takeshi*; Nagai, Yasuyoshi*

Journal of Nuclear Materials, 540, p.152306_1 - 152306_10, 2020/11

 Times Cited Count:9 Percentile:75.92(Materials Science, Multidisciplinary)

Spinodal decomposition in thermally aged Fe-Cr alloys leads to significant hardening, which is the direct cause of the so-called 475C-embrittlement. To illustrate how spinodal decomposition induces hardening by atomistic interactions, we conducted a series of numerical simulations as well as reference experiments. The numerical results indicated that the hardness scales linearly with the short-range order (SRO) parameter, while the experimental result reproduced this relationship within statistical error. Both seemingly suggest that neighboring Cr-Cr atomic pairs essentially cause hardening, because SRO is by definition uniquely dependent on the appearance probability of such pairs. A further numerical investigation supported this notion, as it suggests that the dominant cause of hardening is the pinning effect of dislocations passing over such Cr-Cr pairs.

Journal Articles

Dynamic observation and theoretical analysis of initial O$$_{2}$$ molecule adsorption on polar and $$m$$-plane surfaces of GaN

Sumiya, Masatomo*; Sumita, Masato*; Asai, Yuya*; Tamura, Ryo*; Uedono, Akira*; Yoshigoe, Akitaka

Journal of Physical Chemistry C, 124(46), p.25282 - 25290, 2020/11

 Times Cited Count:10 Percentile:40.15(Chemistry, Physical)

The initial oxidation of different GaN surfaces [the polar Ga-face (+c) and N-face (-c) and the nonpolar (10$$bar{1}$$0) ($$m$$)plane] under O$$_{2}$$ molecular beam irradiation was studied by real-time synchrotron radiation X-ray photoelectron spectroscopy and DFT molecular dynamics calculation. The results predict that triplet O$$_{2}$$ either dissociates or chemisorbs at the bridge position on the +c-surface, while on N-terminated -c-surface the O$$_{0}$$2 molecule only undergoes dissociative chemisorption. On the $$m$$-GaN surface, although the dissociation of O$$_{2}$$ is dominant, the bond length and angle were found to fluctuate from those of O$$_{2}$$ molecules adsorbed on the polar surfaces. The computational model including both the surface spin and polarity of GaN is useful for understanding the interface between GaN and oxide layers in metal-oxide electronic.

Journal Articles

Molecular dynamics study of phosphorus migration in $$Sigma$$5 grain boundary of $$alpha$$-iron

Ebihara, Kenichi; Suzudo, Tomoaki

Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.65 - 69, 2020/10

Phosphorus (P) is known as one of the elements which cause the grain boundary (GB) embrittlement in steels and its GB segregation is promoted by the increase of vacancies and self-interstitial atoms due to irradiation. Thus we have been developing the rate-theory model for estimating GB P segregation under several temperatures and irradiation conditions. Because the model does not include the trapping and de-trapping processes properly, however, the model cannot calculate GB P coverage which is measured by experiments. As for the de-trapping process, so far, we have considered the migration of a P atom in the GB region of $$Sigma$$3 symmetrical tilt GB using molecular dynamics (MD). In the current study, we also simulated the P migration in $$Sigma$$5 GB using MD and compared the result with that of $$Sigma$$3. As a result, at 800K, it was found that a P atom cannot migrate in $$Sigma$$5 without vacancies while a P atom can migrate between iron atoms in $$Sigma$$3.

192 (Records 1-20 displayed on this page)